The generator matrix

 1  0  0  1  1  1  2  1  1  1  1  0  2 X^2  1  1  1  1 X^2+X+2  X X^2+X  1 X^2+X+2  1  0  1 X+2  1 X+2  1 X^2  1  0 X^2+X+2  1  1  1  1 X^2+2  2 X+2  1 X^2+X X^2+2 X^2+X+2  1  1  0  1  X  1  1  1 X^2 X+2 X^2 X^2+X  X X+2  1  2 X^2  1
 0  1  0  2 X^2+1 X^2+3  1 X^2 X^2+2  1  3  1  1  X  X X+2 X+1 X^2+X+3  1  1  2 X+2  1 X^2+X+1 X^2 X^2+3  1 X^2+X  X X+1  1 X+3 X^2+X+2  1 X^2+2 X+2  3 X^2+X  1  1  1 X^2+1 X+2  1  1 X+3 X^2+X+1  1  3 X^2 X^2 X^2+X+1  0  0  1  1  1  1  1  1  2  1  0
 0  0  1 X+3 X+1  2 X^2+X+1  X  3  1 X+2  X  3  1 X^2+X+2  3 X+1 X+2  X X+3  1 X^2+X+3 X^2+2 X^2+3  1 X^2 X^2+3 X^2+2  1 X^2+X+3 X+1  2  1 X^2+X+2 X^2+3 X+3 X^2+X X^2+3  0 X^2+3  2  1  1  X  3 X^2+X+2  0 X+3 X^2+X+3  1 X^2  1 X^2+2  1 X^2+X+3  1 X+3  3 X^2+X+2 X^2+1  X X^2+X+3  0

generates a code of length 63 over Z4[X]/(X^3+2,2X) who�s minimum homogenous weight is 59.

Homogenous weight enumerator: w(x)=1x^0+96x^59+612x^60+716x^61+581x^62+690x^63+390x^64+278x^65+293x^66+150x^67+87x^68+78x^69+68x^70+40x^71+9x^72+1x^74+5x^76+1x^78

The gray image is a code over GF(2) with n=504, k=12 and d=236.
This code was found by Heurico 1.16 in 0.218 seconds.